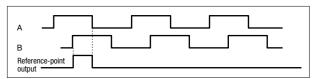
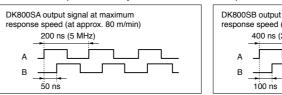
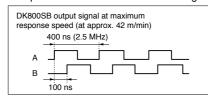


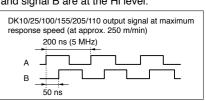
Unit: mm



Specifications					
Model	DK110NLR5				
Measuring range	110 mm				
Maximum resolution	0.5 µm				
Accuracy (at 20°C/68°F)	4 µm				
Measuring force (at 20°C/68°F)*1	Downward: 1.55±0.15 N (Spindle weight)				
Maximum response speed	250 m/min				
Reference point	Position at spindle movement of 5 mm				
Reference-point response speed	Same as the noted maximum response speed				
Output	A/B/reference point Voltage-differential line driver output (conforming to EIA-422)				
Protection grade*2	IP50				
Vibration resistance	10 to 2000 Hz				
Impact resistance	1500 m/s² 11 ms				
Operating temperature	0 to 50 °C				
Storage temperature	−20 to 60 °C				
Power supply	5 VDC±5 %				
Power consumption	1 W				
Mass*3	Approx. 800 g				
Output cable length	2.4 m				
Feeler	Carbide ball tip, Mounting screw M2.5				
Accessories	Instruction Manual, +P M4 x 5 screw (2pc), Lift lever DZ-161				


^{*1} The measuring force can be changed by mounting optional balancer DZ581 and changing weights.

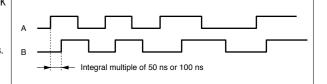

DK Series measuring unit output signals


The signal output from these measuring units are A/B/Z reference point, voltage differential line driver output compliant with EIA-422.

The reference point is the synchronized reference point that is at Hi level when the signal A and signal B are at the Hi level.

The A/B quadrature output signal by measuring unit is 5 MHz maximum with a minimum phase difference of 50 ns for DK800SA and is 2.5 MHz maximum with a minimum phase difference of 100 ns for DK800SB.

The counter or control devise capable of processing these signals should be used.

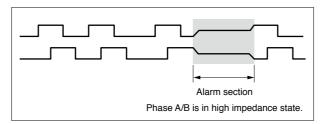

For DK the A/B quadrature output signal by measuring unit is 5 MHz maximum with a minimum phase difference of 50 ns .

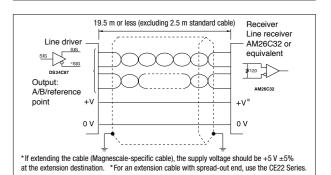
The counter or control devise capable of processing these signals should

Output Signal Phase Difference

Moving length of the measuring unit is detected every 50 ns for the DK800SA/DK and every 100 ns for the DK800SB, and the phase difference proportional to the amount traveled is output.

The amount of phase difference changes in integer multiples of 50 ns or 100 ns. Also, the minimum phase difference for the phase A and B is 50 ns for the DK800SA/DK and 100 ns for the DK800SB.

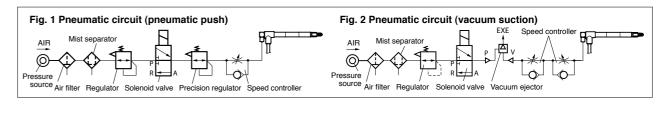



In the standard specifications, the minimum phase difference is fixed at 50 ns for the DK800SA and 100 ns for the DK800SB, however, the minimum phase differences in the following table below are available as special specifications.

Phase A/B Minimum phase difference	Phase A single cycle	Counter's permissible frequency	Maximum response speed		Remarks
			Resolution 0.1 μm	Resolution 0.5 μm	Hemaiks
50ns	200ns	5MHz	80m/min	250m/min	DK800SA standard product
100ns	400ns	2.5MHz	42m/min	100m/min	DK800SB standard product
300ns	1.2µs	833kHz	14m/min	33m/min	Special specifications
500ns	2μs	500kHz	8.4m/min	20m/min	Special specifications

Output Signal Alarm

If the response speed is exceeded, the phase A/B output from this measuring unit changes to high impedance state for about 400 ms as an alarm.



Receiver

DK Series operating cautions

- For the pneumatic push type, use of the pneumatic circuit shown in Fig. 1 enables the feeler to be air driven. Pressure regulation is required depending on the usage condition. A precision pressure regulator (e.g., SMC IR2010 or equivalent) should be used.
- For the vacuum suction type, use of the pneumatic circuit shown in Fig. 2 enables the feeler to be air driven.

^{*2} Excluding the interpolation box and connector *3 Excluding cable section and interpolation box